A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin
نویسندگان
چکیده
The nanogold reaction between HAuCl4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR) enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs) that exhibited strong surface plasmon resonance (SPR) absorption (Abs) at 550 nm and resonance Rayleigh scattering (RRS) at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG), the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide-hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2-20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples.
منابع مشابه
A Graphene Oxide-Based Fluorescent Method for the Detection of Human Chorionic Gonadotropin
Human chorionic gonadotropin (hCG) has been regarded as a biomarker for the diagnosis of pregnancy and some cancers. Because the currently used methods (e.g., disposable Point of Care Testing (POCT) device) for hCG detection require the use of many less stable antibodies, simple and cost-effective methods for the sensitive and selective detection of hCG have always been desired. In this work, w...
متن کاملThe potentiality of the functionalized nitrogen and thiol-doped graphene quantum dots (GQDs-N-S) to stabilize the antibodies in the designing of human chorionic gonadotropin immunosensor
In this study, for the first time, a simple immunosensor for ultrasensitive recognition of Human Chorionic Gonadotropin (hCG) in serum samples was fabricated by exploiting a simple approach. In this method, a low-cost and sensitive immunosensor was fabricated based on QDs-N-S/Au nanoparticles (NPs) modified Screen-Printed Carbon Electrode (SPCE). It seems that, QDs-N-S/Au NPs/ antibody as a bio...
متن کاملFabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface
An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...
متن کاملImmunoassay for Human Chorionic Gonadotropin Based on Glassy Carbon Electrode Modified with an Epitaxial Nanocomposite
A highly sensitive electrochemicalimmunosensor was developed to detect hCG based on immobilization ofhCG-antibody (anti-hCG) onto robust nanocomposite containing Gr, Chit,1-methyl-3-octyl imidazolium tetra fluoro borate ionic liquid (IL)(Gr-IL-Chit). AuNPs were used to immobilize hCG antibody on the modifiedelectrode. The amine groups of the antibody are cova...
متن کاملAn antibody-graphene oxide nanoribbon conjugate as a surface enhanced laser desorption/ionization probe with high sensitivity and selectivity.
Graphene oxide nanoribbons (GONRs) were covalently functionalized with an antibody using polyethylene glycol (PEG) as a linker to produce a novel probe for surface enhanced laser desorption/ionization mass spectrometry (SELDI MS). This probe provides a highly sensitive and selective platform for enrichment and MS detection of small molecules in complex media.
متن کامل